Author:
Green Toby,Miria Opio Innocent,Crook Rolf,Ross Andrew
Abstract
Rural areas of developing countries often have poor energy infrastructure and so rely on a very local supply. A local energy supply in rural Uganda frequently has problems such as limited accessibility, unreliability, a high expense, harmful to health and deforestation. By carbonizing waste biomass streams, available to those in rural areas of developing countries through a solar resource, it would be possible to create stable, reliable fuels with more consistent calorific values. An energy demand calculator is reported to assess the different energy demands of various thermochemical processes that can be used to create biofuel. The energy demand calculator then relates the energy required to the area of solar collector required for an integrated system. Pyrolysis was shown to require the least amount of energy to process 1 kg of biomass when compared to steam treatment and hydrothermal carbonization (HTC). This was due to the large amount of water required for steam treatment and HTC. A resource assessment of Uganda is reported, to which the energy demand calculator has been applied. Quantitative data are presented for agricultural residues, forestry residues, animal manure and aquatic weeds found within Uganda. In application to rural areas of Uganda, a linear Fresnel HTC integration shows to be the most practical fit. Integration with a low temperature steam treatment would require more solar input for less carbonization due to the energy required to vaporize liquid water.
Funder
Engineering and Physical Sciences Research Council
Subject
Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous)