An Assessment of Different Integration Strategies of Hydrothermal Carbonisation and Anaerobic Digestion of Water Hyacinth

Author:

Brown Aaron E.,Adams Jessica M. M.ORCID,Grasham Oliver R.,Camargo-Valero Miller AlonsoORCID,Ross Andrew B.

Abstract

Water hyacinth (WH) is an invasive aquatic macrophyte that dominates freshwater bodies across the world. However, due to its rapid growth rate and wide-spread global presence, WH could offer great potential as a biomass feedstock, including for bioenergy generation. This study compares different integration strategies of hydrothermal carbonisation (HTC) and anaerobic digestion (AD) using WH, across a range of temperatures. These include (i) hydrochar combustion and process water digestion, (ii) hydrochar digestion, (iii) slurry digestion. HTC reactions were conducted at 150 °C, 200 °C, and 250 °C. Separation of hydrochars for combustion and process waters for digestion offers the most energetically-feasible valorisation route. However, hydrochars produced from WH display slagging and fouling tendencies; limiting their use in large-scale combustion. AD of WH slurry produced at 150 °C appears to be energetically-feasible and has the potential to also be a viable integration strategy between HTC and AD, using WH.

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3