The Integrated Energy Consumption Index for Energy Biomass Grinding Technology Assessment

Author:

Kruszelnicka Weronika,Kasner Robert,Bałdowska-Witos PatrycjaORCID,Flizikowski Józef,Tomporowski AndrzejORCID

Abstract

The assessment of engineering objects in terms of energy consumption is an important part of sustainable development. Many materials, including those from the energy sector, need to undergo earlier processing, e.g., grinding. Grinding processes still demand a significant amount of energy, whereas current energy assessment methods do not take into account important parameters of the process, which makes it difficult to choose their optimal values. The study presents the analysis, testing, and assessment of mechanical engineering systems in terms of the energy consumption involved in the grinding of biomass intended for energy production purposes. A testing methodology was developed to improve the parameters of multi-disc grinding, including the reduction of energy consumption, power input, product quality improvement, and process efficiency. An original model of integrated energy consumption was developed. Tests were carried out on a five-disc grinder for five programs to assess the programmable angular speeds of the grinder discs. Output values, including specific energy demand, fragmentation degree, and integrated energy consumption, were assigned to each testing program. The test results were subjected to statistical analysis. Based on the authors’ own research, it was found that the angular speed of the discs and, consequently, the linear speed of the grinding blades, have a significant influence on the values of the integrated energy consumption of the preliminary process.

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous)

Cited by 27 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3