A Particle Swarm Optimization Based Approach to Pre-tune Programmable Hyperspectral Sensors

Author:

Banerjee Bikram PratapORCID,Raval Simit

Abstract

Identification of optimal spectral bands often involves collecting in-field spectral signatures followed by thorough analysis. Such rigorous field sampling exercises are tedious, cumbersome, and often impractical on challenging terrain, which is a limiting factor for programmable hyperspectral sensors mounted on unmanned aerial vehicles (UAV-hyperspectral systems), requiring a pre-selection of optimal bands when mapping new environments with new target classes with unknown spectra. An innovative workflow has been designed and implemented to simplify the process of in-field spectral sampling and its realtime analysis for the identification of optimal spectral wavelengths. The band selection optimization workflow involves particle swarm optimization with minimum estimated abundance covariance (PSO-MEAC) for the identification of a set of bands most appropriate for UAV-hyperspectral imaging, in a given environment. The criterion function, MEAC, greatly simplifies the in-field spectral data acquisition process by requiring a few target class signatures and not requiring extensive training samples for each class. The metaheuristic method was tested on an experimental site with diversity in vegetation species and communities. The optimal set of bands were found to suitably capture the spectral variations between target vegetation species and communities. The approach streamlines the pre-tuning of wavelengths in programmable hyperspectral sensors in mapping applications. This will additionally reduce the total flight time in UAV-hyperspectral imaging, as obtaining information for an optimal subset of wavelengths is more efficient, and requires less data storage and computational resources for post-processing the data.

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3