Mapping Sensitive Vegetation Communities in Mining Eco-space using UAV-LiDAR

Author:

Banerjee Bikram Pratap,Raval SimitORCID

Abstract

AbstractNear earth sensing from uncrewed aerial vehicles or UAVs has emerged as a potential approach for fine-scale environmental monitoring. These systems provide a cost-effective and repeatable means to acquire remotely sensed images in unprecedented spatial detail and a high signal-to-noise ratio. It is increasingly possible to obtain both physiochemical and structural insights into the environment using state-of-art light detection and ranging (LiDAR) sensors integrated onto UAVs. Monitoring sensitive environments, such as swamp vegetation in longwall mining areas, is essential yet challenging due to their inherent complexities. Current practices for monitoring these remote and challenging environments are primarily ground-based. This is partly due to an absent framework and challenges of using UAV-based sensor systems in monitoring such sensitive environments. This research addresses the related challenges in developing a LiDAR system, including a workflow for mapping and potentially monitoring highly heterogeneous and complex environments. This involves amalgamating several design components, including hardware integration, calibration of sensors, mission planning, and developing a processing chain to generate usable datasets. It also includes the creation of new methodologies and processing routines to establish a pipeline for efficient data retrieval and generation of usable products. The designed systems and methods were applied to a peat swamp environment to obtain an accurate geo-spatialised LiDAR point cloud. Performance of the LiDAR data was tested against ground-based measurements on various aspects, including visual assessment for generation LiDAR metrices maps, canopy height model, and fine-scale mapping.

Publisher

Springer Science and Business Media LLC

Subject

Energy Engineering and Power Technology,Geotechnical Engineering and Engineering Geology

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3