Abstract
Characteristics of near-inertial waves (NIWs) induced by the tropical storm Noul in the South China Sea are analyzed based on in situ observations, remote sensing, and analysis data. Remote sensing sea level anomaly data suggests that the NIWs were influenced by a southwestward moving anticyclonic eddy. The NIWs had comparable spectral density with internal tides, with a horizontal velocity of 0.14–0.21 m/s. The near-inertial kinetic energy had a maximum value of 7.5 J/m3 and propagated downward with vertical group speed of 10 m/day. Downward propagation of near-inertial energy concentrated in smaller wavenumber bands overwhelmed upward propagation energy. The e-folding time of NIWs ranged from 4 to 11 days, and the larger e-folding time resulted from the mesoscale eddies with negative vorticity. Modified by background relative vorticity, the observed NIWs had both red-shifted and blue-shifted frequencies. The upward propagating NIWs had larger vertical phase speeds and wavelengths than downward propagating NIWs. There was energy transfer from the mesoscale field to NIWs with a maximum value of 8.5 × 10−9 m2 s−3 when total shear and relative vorticity of geostrophic currents were commensurate. Our results suggest that mesoscale eddies are a significant factor influencing the generation and propagation of NIWs in the South China Sea.
Funder
Natural Key Research and Development Program of China
National Natural Science Foundation of China
Subject
General Earth and Planetary Sciences
Cited by
11 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献