Observed Near-Inertial Waves in the Northern South China Sea

Author:

Yang BingORCID,Hu Po,Hou Yijun

Abstract

Characteristics of near-inertial waves (NIWs) induced by the tropical storm Noul in the South China Sea are analyzed based on in situ observations, remote sensing, and analysis data. Remote sensing sea level anomaly data suggests that the NIWs were influenced by a southwestward moving anticyclonic eddy. The NIWs had comparable spectral density with internal tides, with a horizontal velocity of 0.14–0.21 m/s. The near-inertial kinetic energy had a maximum value of 7.5 J/m3 and propagated downward with vertical group speed of 10 m/day. Downward propagation of near-inertial energy concentrated in smaller wavenumber bands overwhelmed upward propagation energy. The e-folding time of NIWs ranged from 4 to 11 days, and the larger e-folding time resulted from the mesoscale eddies with negative vorticity. Modified by background relative vorticity, the observed NIWs had both red-shifted and blue-shifted frequencies. The upward propagating NIWs had larger vertical phase speeds and wavelengths than downward propagating NIWs. There was energy transfer from the mesoscale field to NIWs with a maximum value of 8.5 × 10−9 m2 s−3 when total shear and relative vorticity of geostrophic currents were commensurate. Our results suggest that mesoscale eddies are a significant factor influencing the generation and propagation of NIWs in the South China Sea.

Funder

Natural Key Research and Development Program of China

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3