IONORING: Real-Time Monitoring of the Total Electron Content over Italy

Author:

Cesaroni ClaudioORCID,Spogli LucaORCID,De Franceschi Giorgiana

Abstract

IONORING (IONOspheric RING) is a tool capable to provide the real-time monitoring and modeling of the ionospheric Total Electron Content (TEC) over Italy, in the latitudinal and longitudinal ranges of 35°N–48°N and 5°E–20°E, respectively. IONORING exploits the Global Navigation Satellite System (GNSS) data acquired by the RING (Rete Integrata Nazionale GNSS) network, managed by the Istituto Nazionale di Geofisica e Vulcanologia (INGV). The system provides TEC real-time maps with a very fine spatial resolution (0.1° latitude x 0.1° longitude), with a refresh time of 10 min and a typical latency below the minute. The TEC estimated at the ionospheric piercing points from about 40 RING stations, equally distributed over the Italian territory, are interpolated using locally (weighted) regression scatter plot smoothing (LOWESS). The validation is performed by comparing the IONORING TEC maps (in real-time) with independent products: (i) the Global Ionospheric Maps (GIM) - final product- provided by the International GNSS Service (IGS), and (ii) the European TEC maps from the Royal Observatory of Belgium. The validation results are satisfactory in terms of Root Mean Square Error (RMSE) between 2 and 3 TECu for both comparisons. The potential of IONORING in depicting the TEC daily and seasonal variations is analyzed over 3 years, from May 2017 to April 2020, as well as its capability to account for the effect of the disturbed geospace on the ionosphere at mid-latitudes. The IONORING response to the X9.3 flare event of September 2017 highlights a sudden TEC increase over Italy of about 20%, with a small, expected dependence on the latitude, i.e., on the distance from the subsolar point. Subsequent large regional TEC various were observed in response to related follow-on geomagnetic storms. This storm is also used as a case event to demonstrate the potential of IONORING in improving the accuracy of the GNSS Single Point Positioning. By processing data in kinematic mode and by using the Klobuchar as the model to provide the ionospheric correction, the resulting Horizontal Positioning Error is 4.3 m, lowering to, 3.84 m when GIM maps are used. If IONORING maps are used as the reference ionosphere, the error is as low as 2.5 m. Real-times application and services in which IONORING is currently integrated are also described in the conclusive remarks.

Funder

Ministero dell’Istruzione, dell’Università e della Ricerca

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3