The effects of the May 2024 Mother’s Day superstorm over the Mediterranean sector: from data to public communication

Author:

Spogli Luca1,Alberti Tommaso2,Bagiacchi Paolo2,Cafarella Lili2,Cesaroni Claudio2,Cianchini Gianfranco2,Coco Igino2,Di Mauro Domenico2,Ghidoni Rebecca3,Giannattasio Fabio2,Ippolito Alessandro2,Marcocci Carlo2,Pezzopane Michael,Pica Emanuele2,Pignalberi Alessio2,Perrone Loredana2,Romano Vincenzo2,Sabbagh Dario2,Scotto Carlo2,Spadoni Sabina2,Tozzi Roberta2,Viola Massimo2

Affiliation:

1. Istituto Nazionale di Geofisica e Vualcnologia, Rome, Italy

2. Istituto Nazionale di Geofisica e Vulcanologia, Rome, Italy

3. Alma Mater Studiorum - Università degli studi di Bologna, Bologna, Italy

Abstract

On 8 May 2024, the solar active region AR13664 started releasing a series of intense solar flares. Those of class X released between 9 and 11 May 2024 gave rise to a chain of fast Coronal Mass Ejections (CMEs) that proved to be geoeffective. The Storm Sudden Commencement (SSC) of the resulting geomagnetic storm was registered on 10 May 2024 and it is, to date, the strongest event since November 2003. The May 2024 storm, named hereafter Mother’s Day storm, peaked with a Dst of –412 nT and stands out as a “standard candle” storm affecting modern era technologies prone to Space Weather threats. Moreover, the recovery phase exhibited almost no substorm signatures, making the Mother’s Day storm as a perfect storm example. Despite the plethora of notable near Earth environment modifications that are still under investigation, in this paper we concentrate on the Space Weather effects over the Mediterranean sector, with a focus on Italy. In fact, the Istituto Nazionale di Geofisica e Vulcanologia (INGV) manages a dense network of GNSS receivers (including scintillation receivers), ionosondes and magnetometers in the Mediterranean area, which facilitated for a detailed characterization of the modifications induced by the storm. Concerning the geomagnetic field, observatories located in Italy recorded a SSC with a rise time of only 3 minutes and a maximum variation of around 600 nT. The most notable ionospheric effect following the arrival of the disturbance was a significant decrease in plasma density on 11 May, resulting in a pronounced negative ionospheric storm registered on both the critical F2-layer frequency (foF2) and the Total Electron Content (TEC). Another negative effect was recorded on 13 May, while no signatures of composition changes and, specifically, to a decrease of the [O]/[N ] ratio. The IRI UP IONORING 2 data-assimilation procedure, recently developed to nowcast foF2 over Italy, proved to be quite reliable during this extreme event, being characterised just by an overestimation during the main phase of the storm, when the electron density and the height of the F region decreased and increased, respectively. Relevant outcomes of the work relate to the Rate Of TEC change Index (ROTI), which shows unusually high spatially distributed values on the nights of 10 and 11 May. The ROTI enhancements on 10 May might be linked to Stable Auroral Red (SAR) arcs and an equatorward displacement of the main ionospheric trough. Instead, the ROTI enhancements on 11 May might be triggered by a joint action of low-latitude plasma pushed poleward by the pre-reversal enhancement (PRE) in the post-sunset hours and wave-like perturbations propagating from the North. Furthermore, the storm generated immediate attention of the general public to Space Weather effects, including mid-latitude visible phenomena like SAR arcs. This paper outlines the report of the Space Weather Monitoring Group (SWMG) of the INGV Environment Department and its effort to disseminate information about this exceptional event.

Publisher

Instituto Nazionale di Geofisica e Vulcanologia, INGV

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Report on the effects of the May 2024 Mother's day geomagnetic storm observed from Chile;Journal of Atmospheric and Solar-Terrestrial Physics;2024-08

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3