Cyclonic Wave Simulations Based on WAVEWATCH-III Using a Sea Surface Drag Coefficient Derived from CFOSAT SWIM Data

Author:

Shao WeizengORCID,Jiang Tao,Zhang Yu,Shi Jian,Wang Weili

Abstract

It is well known that numerical models are powerful methods for wave simulation of typhoons, where the sea surface drag coefficient is sensitive to strong winds. With the development of remote sensing techniques, typhoon data (i.e., wind and waves) have been captured by optical and microwave satellites such as the Chinese-French Oceanography SATellite (CFOSAT). In particular, wind and wave spectra data can be simultaneously measured by the Surface Wave Investigation and Monitoring (SWIM) onboard CFOSAT. In this study, existing parameterizations for the drag coefficient are implemented for typhoon wave simulations using the WAVEWATCH-III (WW3) model. In particular, a parameterization of the drag coefficient derived from sea surface roughness is adopted by considering the terms for wave steepness and wave age from the measurements from SWIM products of CFOSAT from 20 typhoons during 2019–2020 at winds up to 30 m/s. The simulated significant wave height (Hs) from the WW3 model was validated against the observations from several moored buoys active during three typhoons, i.e., Typhoon Fung-wong (2014), Chan-hom (2015), and Lekima (2019). The analysis results indicated that the proposed parameterization of the drag coefficient significantly improved the accuracy of typhoon wave estimation (a 0.49 m root mean square error (RMSE) of Hs and a 0.35 scatter index (SI)), greater than the 0.55 RMSE of Hs and >0.4 SI using other existing parameterizations. In this sense, the adopted parameterization for the drag coefficient is recommended for typhoon wave simulations using the WW3 model, especially for sea states with Hs < 7 m. Moreover, the accuracy of simulated waves was not reduced with growing winds and sea states using the proposed parameterization. However, the applicability of the proposed parameterization in hurricanes necessitates further investigation at high winds (>30 m/s).

Publisher

MDPI AG

Subject

Atmospheric Science,Environmental Science (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3