Abstract
Precipitation is considered a crucial component in the hydrological cycle and changes in its spatial pattern directly influence the water resources. We compare different interpolation techniques in predicting the spatial distribution pattern of precipitation in Chongqing. Six interpolation methods, i.e., Inverse Distance Weighting (IDW), Radial Basis Function (RBF), Diffusion Interpolation with Barrier (DIB), Kernel Interpolation with Barrier (KIB), Ordinary Kriging (OK) and Empirical Bayesian Kriging (EBK), were applied to estimate different rainfall patterns. Annual mean, rainy season and dry-season precipitation was calculated from the daily precipitation time series of 34 meteorological stations with a time span of 1991 to 2019, based on Leave-One-Out Cross-Validation (LOOCV), Mean Square Error (MSE), Mean Absolute Error (MAE), Mean Absolute Percentage Error (MAPE), Symmetric Mean Absolute Percentage Error (SMAPE) and Nash–Sutcliffe Efficiency coefficient (NSE) as validation indexes of the applied models for calculating the error degree and accuracy. Correlation test and Spearman coefficient was performed on the estimated and observed values. A method combining Entropy Weight and Technique for Order Preference by Similarity to Ideal Solution (Entropy-Weighted TOPSIS) was introduced to rank the performance of six interpolation methods. The results indicate that interpolation technique performs better in estimating during periods of low precipitation (i.e., dry season, relative to rainy season and mean annual). The performance priorities of the six methods under the combined multiple precipitation distribution patterns are KIB > EBK > OK > RBF > DIB > IDW. Among them, KIB method has the highest accuracy which maps more accurate precipitation surfaces, with the disadvantage that estimation error is prone to outliers. EBK method is the second highest, and IDW method has the lowest accuracy with a high degree of error. This paper provides information for the application of interpolation methods in estimating rainfall spatial pattern and for water resource management of concerned regions.
Funder
Chongqing Municipal Education Commission
Subject
Atmospheric Science,Environmental Science (miscellaneous)
Cited by
33 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献