Comparison of spatial interpolation methods for the estimation of precipitation patterns at different time scales to improve the accuracy of discharge simulations

Author:

Liu Dedi1,Zhao Qin1,Fu Dezhi1,Guo Shenglian1,Liu Pan1,Zeng Yujie1

Affiliation:

1. State Key Laboratory of Water Resources and Hydropower Engineering Science, Wuhan University, Wuhan 430072, China

Abstract

Abstract Interpolating precipitation data is of prime importance to hydrological design, modeling, and water resource management. Various models have been developed that estimate spatial precipitation patterns. The purpose of this study is to analyze different precipitation interpolation schemes at different time scales in order to improve the accuracy of discharge simulations. The study was carried out in the upstream area of the Changjiang River basin. The performance of all selected methods was assessed using cross-validation schemes, with the mixed methods ultimately displaying the best performance at all three time scales. However, the differences in performance between the spatial interpolation methods decreased with increasing time scales. The unifying catchment Soil and Water Assessment Tool (SWAT), ‘abcd’, and the Budyko equation were employed at the daily, monthly, and annual scales, respectively, to simulate discharge. The performance of the discharge simulation at the monthly and annual time scales was consistent with their ranks of spatial precipitation estimation. For coarse, or long period, precipitation, there were no significant differences. However, the mixed methods performed better than the single model for the daily, or short, time scale with respect to the accuracy of the discharge simulation.

Funder

National Natural Science Foundation of China

Danida Fellowship Centre

Publisher

IWA Publishing

Subject

Water Science and Technology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3