Climatology and Formation Environments of Severe Convective Windstorms and Tornadoes in the Perm Region (Russia) in 1984–2020

Author:

Shikhov AndreyORCID,Chernokulsky AlexanderORCID,Kalinin Nikolay,Bykov Alexey,Pischalnikova Evgeniya

Abstract

Severe convective windstorms and tornadoes regularly hit the territory of Russia causing substantial damage and fatalities. An analysis of the climatology and formation environments of these events is essential for risk assessments, forecast improvements and identifying of links with the observed climate change. In this paper, we present an analysis of severe convective windstorms, i.e., squalls and tornadoes reported between 1984 and 2020 in the Perm region (northeast of European Russia), where a local maximum in the frequency of such events was previously found. The analysed database consists of 165 events and includes 100 squalls (convective windstorms), 59 tornadoes, and six cases with both tornadoes and squalls. We used various information to compile the database including weather station reports, damage surveys, media reports, previously presented databases, and satellite images for windthrow. We found that the satellite images of damaged forests are the main data source on tornadoes, but their role is substantially lower for windstorm events due to the larger spatial and temporal scale of such events. Synoptic-scale environments and associated values of convective indices were determined for each event with a known date and time. Similarities and differences for the formation conditions of tornadoes and windstorms were revealed. Both squalls and tornadoes occur mostly on rapidly moving cold fronts or on waving quasi-stationary fronts, associated with low-pressure systems. Analyses of 72-h air parcel backward trajectories shows that the Caspian and Aral Seas are important sources of near-surface moisture for the formation of both squalls and tornadoes. Most of these events are formed within high CAPE and high shear environments, but tornadic storms are generally characterised by a higher wind shear and helicity. We also differentiated convective storms that caused forest damage and those did not. We found the composite parameter WMAXSHEAR is the best discriminator between these two groups. In general, storm events causing windthrow mainly occur under conditions more favourable for deep well-organised convection. Thus, forest damage can be considered as an indicator of the storm severity in the Perm region and in adjacent regions with forest-covered area exceeding 50%.

Funder

Ministry of Science and Higher Education of the Russian Federation

Publisher

MDPI AG

Subject

Atmospheric Science,Environmental Science (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3