High-Resolution Modeling of Mesoscale Circulation in the Atmospheric Boundary Layer over a Complex Coastal Area

Author:

Lim Hee-JeongORCID,Lee Young-HeeORCID

Abstract

We evaluated the performance of the high-resolution (333 m) Weather Research and Forecasting (WRF) model in simulating the flow structure at a complex coastal site in Boseong, South Korea, on 15 July 2018, against observations obtained from a 300 m tower and radiosonde, and analyzed the model results to interpret the measurements. The study site is surrounded by mountains, valleys, and bays, and is adjacent to the South Sea; thus, it is influenced by terrain-forced flow and thermally driven circulation. The study day was characterized by the development of nighttime low-level wind maximum (LLWM) and daytime sea breeze under weak synoptic wind conditions. Although the WRF model simulated the onset and cessation of a sea breeze later than was observed, it showed good skill in reproducing the near-surface temperatures, wind vectors, and vertical profiles of potential temperatures and wind vectors in the atmospheric boundary layer at the study site. We analyzed the model results at 05:30 and 14:30 LST when the model’s performance was good for wind. At 05:30 LST, hydraulic jump produced weak wind conditions below 300 m above ground level (AGL), and westerly down-valley flow developed near the surface, leading to an LLWM. At 14:30 LST, heating over land produced a thermal high over land at 1800 m AGL, counteracting the synoptic pressure gradient, and leading to weak wind conditions at this level. We performed three sensitivity simulations to examine the dependence of flow structure on the horizontal and vertical resolution. The results show that an early-morning hydraulic jump can be simulated by applying a high-resolution model in both the horizontal and vertical grids, and the simulated onset and cessation times of the sea breeze depend on the model’s resolution. The dependence of flow structure on the model resolution has been discussed.

Funder

Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Science, ICT & Future Planning

Publisher

MDPI AG

Subject

Atmospheric Science,Environmental Science (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3