Incremental Pose Map Optimization for Monocular Vision SLAM Based on Similarity Transformation

Author:

Liu WenleiORCID,Wu Sentang,Wu Zhongbo,Wu XiaolongORCID

Abstract

The novel contribution of this paper is to propose an incremental pose map optimization for monocular vision simultaneous localization and mapping (SLAM) based on similarity transformation, which can effectively solve the scale drift problem of SLAM for monocular vision and eliminate the cumulative error by global optimization. With the method of mixed inverse depth estimation based on a probability graph, the problem of the uncertainty of depth estimation is effectively solved and the robustness of depth estimation is improved. Firstly, this paper proposes a method combining the sparse direct method based on histogram equalization and the feature point method for front-end processing, and the mixed inverse depth estimation method based on a probability graph is used to estimate the depth information. Then, a bag-of-words model based on the mean initialization K-means is proposed for closed-loop feature detection. Finally, the incremental pose map optimization method based on similarity transformation is proposed to process the back end to optimize the pose and depth information of the camera. When the closed loop is detected, global optimization is carried out to effectively eliminate the cumulative error of the system. In this paper, indoor and outdoor environmental experiments are carried out using open data sets, such as TUM and KITTI, which fully proves the effectiveness of this method. Closed-loop detection experiments using hand-held cameras verify the importance of closed-loop detection. This method can effectively solve the scale drift problem of monocular vision SLAM and has strong robustness.

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3