Robust Stereo Visual-Inertial Odometry Using Nonlinear Optimization

Author:

Ma ,Bai ,Wang ,Fang

Abstract

The fusion of visual and inertial odometry has matured greatly due to the complementarity of the two sensors. However, the use of high-quality sensors and powerful processors in some applications is difficult due to size and cost limitations, and there are also many challenges in terms of robustness of the algorithm and computational efficiency. In this work, we present VIO-Stereo, a stereo visual-inertial odometry (VIO), which jointly combines the measurements of the stereo cameras and an inexpensive inertial measurement unit (IMU). We use nonlinear optimization to integrate visual measurements with IMU readings in VIO tightly. To decrease the cost of computation, we use the FAST feature detector to improve its efficiency and track features by the KLT sparse optical flow algorithm. We also incorporate accelerometer bias into the measurement model and optimize it together with other variables. Additionally, we perform circular matching between the previous and current stereo image pairs in order to remove outliers in the stereo matching and feature tracking steps, thus reducing the mismatch of feature points and improving the robustness and accuracy of the system. Finally, this work contributes to the experimental comparison of monocular visual-inertial odometry and stereo visual-inertial odometry by evaluating our method using the public EuRoC dataset. Experimental results demonstrate that our method exhibits competitive performance with the most advanced techniques.

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Reference33 articles.

1. MonoSLAM: Real-Time Single Camera SLAM

2. LSD-SLAM: Large-Scale Direct Monocular SLAM;Engel;Inf. Secur. Appl.,2014

3. Direct Sparse Odometry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3