Insecticide Resistance and Its Management in Two Invasive Cryptic Species of Bemisia tabaci in China

Author:

Wang Qian1,Luo Chen1,Wang Ran1

Affiliation:

1. Institute of Plant Protection, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China

Abstract

The sweet potato whitefly Bemisia tabaci is a major agricultural pest with a wide host range throughout the world. The species designation for B. tabaci includes numerous distinct cryptic species or biotypes. Two invasive B. tabaci biotypes, MEAM1 (B) and MED (Q), were found in China at the end of the 20th century and at the beginning of the 21st century. MEAM1 (B) and MED (Q) show higher pesticide resistance levels than native strains, and the levels of resistance vary with changes in insecticide selection pressure. Recent studies have revealed metabolic resistance mechanisms and target site mutations in invasive B. tabaci strains that render them resistant to a range of insecticides and have uncovered the frequency of these resistance-related mutations in B. tabaci populations in China. Novel pest control agents, such as RNA-based pesticides and nano-pesticides, have achieved effective control effects in the laboratory and are expected to be applied for field control of B. tabaci in the future. In this review, we discuss the mechanisms of resistance developed by these invasive B. tabaci populations since their invasion into China. We also provide suggestions for ecologically sound and efficient B. tabaci control.

Funder

National Natural Science Foundation of China

Outstanding Youth Foundation of the Beijing Academy of Agriculture and Forestry Sciences

Publisher

MDPI AG

Subject

Inorganic Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Computer Science Applications,Spectroscopy,Molecular Biology,General Medicine,Catalysis

Reference64 articles.

1. Insecticide resistance and its management in Bemisia tabaci species;Horowitz;J. Pest Sci.,2020

2. Whitefly interactions with plants;Wang;Curr. Opin. Insect Sci.,2017

3. Directory of whiteflies in China;Zhou;Chin. J. Entomol.,1949

4. The use of mitochondrial cytochrome oxidaseI (mtCOI) gene sequences for the identification of biotypes of Bemisia tabaci (Gennadius)in China;Luo;Acta Entomol. Sin.,2002

5. The Introduction Of The Exotic Q Biotype Of Bemisia Tabaci From The Mediterranean Region Into China On Ornamental Crops;Chu;Fla. Entomol.,2006

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3