Disparities in Genetic Diversity Drive the Population Displacement of Two Invasive Cryptic Species of the Bemisia tabaci Complex in China

Author:

Xue Yantao1ORCID,Wang Yusheng12,Chen Jiqiang1,Zhang Guifen1,Liu Wanxue1,Wan Fanghao1ORCID,Zhang Yibo1

Affiliation:

1. State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China

2. College of Plant Protection, Hunan Agricultural University, Changsha 410128, China

Abstract

Within the whitefly Bemisia tabaci (Gennadius) (Hemiptera: Aleyrodidae) complex, two cryptic species, namely Middle East-Asia Minor 1 (MEAM1) and Mediterranean (MED), are important invasive pests affecting global agriculture and horticulture. They were introduced into China sequentially in the mid-1990s and around 2003, respectively. Subsequently, the latter invader MED has outcompeted the earlier invader MEAM1, becoming the dominant population in the field. Although extensive studies have explored the underlying mechanisms driving this shift, the contribution of population genetics remains notably underexplored. In this study, we analyzed the genetic diversity and structure of 22 MED and 8 MEAM1 populations from various regions of China using mitochondrial DNA sequencing and microsatellite genotyping. Our results indicate low and moderate levels of genetic differentiation among geographically separate populations of MED and MEAM1, respectively. Median-joining network analysis of mtCOI gene haplotypes revealed no clear geographic structuring for either, with common haplotypes observed across provinces, although MED had more haplotypes. Comparative analyses revealed that MED presented greater genetic diversity than MEAM1 on the basis of two markers. Furthermore, analysis of molecular variance supported these findings, suggesting that while some genetic variation exists between populations, a significant amount is also present within populations. These findings reveal the population genetics of the two invasive cryptic species of the B. tabaci complex in China and suggest that the disparities in genetic diversity drive the displacement of their populations in the field. This work also provides valuable information on the genetic factors influencing the population dynamics and dominance of these invasive whitefly species.

Funder

National Key R & D Project of China

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3