Sub-Annual Calving Front Migration, Area Change and Calving Rates from Swath Mode CryoSat-2 Altimetry, on Filchner-Ronne Ice Shelf, Antarctica

Author:

Wuite JanORCID,Nagler ThomasORCID,Gourmelen NoelORCID,Escorihuela Maria JoseORCID,Hogg Anna E.ORCID,Drinkwater Mark R.ORCID

Abstract

Mapping the time-variable calving front location (CFL) of Antarctic ice shelves is important for estimating the freshwater budget, as an indicator of changing ocean and structural conditions or as a precursor of dynamic instability. Here, we present a novel approach for deriving regular and consistent CFLs based on CryoSat-2 swath altimetry. The CFL detection is based on the premise that the shelf edge is usually characterized by a steep ice cliff, which is clearly resolved in the surface elevation data. Our method applies edge detection and vectorization of the sharp ice edge in gridded elevation data to generate vector shapefiles of the calving front. To show the feasibility of our approach, we derived a unique data set of ice-front positions for the Filchner-Ronne Ice Shelf (FRIS) between 2011 and 2018 at a 200 m spatial resolution and biannual temporal frequency. The observed CFLs compare well with independently derived ice front positions from Sentinel-1 Synthetic Aperture Radar imagery and are used to calculate area change, advance rates, and iceberg calving rates. We measure an area increase of 810 ± 40 km2 a−1 for FRIS and calving rates of 9 ± 1 Gt a−1 and 7 ± 1 Gt a−1 for the Filchner and Ronne Ice Shelves, respectively, which is an order of magnitude smaller than their steady-state calving flux. Our findings demonstrate that the “elevation-edge” method is complementary to standard CFL detection techniques. Although at a reduced spatial resolution and less suitable for smaller glaciers in steep terrain, it enables to provide CFLs at regular intervals and to fill existing gaps in time and space. Moreover, the method simultaneously provides ice thickness, required for mass budget calculation, and has a degree of automation which removes the need for heavy manual intervention. In the future, altimetry data has the potential to deliver a systematic and continuous record of change in ice shelf calving front positions around Antarctica. This will greatly benefit the investigation of environmental forcing on ice flow and terminus dynamics by providing a valuable climate data record and improving our knowledge of the constraints for calving models and ice shelf freshwater budget.

Funder

European Space Agency

Natural Environment Research Council

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

Cited by 11 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3