Automatic Extraction of the Calving Front of Pine Island Glacier Based on Neural Network

Author:

Song Xiangyu12ORCID,Du Yang3ORCID,Guo Jiang4ORCID

Affiliation:

1. Key Laboratory of Roads and Railway Engineering Safety Control, Shijiazhuang Tiedao University, Ministry of Education, Shijiazhuang 050043, China

2. School of Civil Engineering, Shijiazhuang Tiedao University, Shijiazhuang 050043, China

3. College of Astronautics, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China

4. GNSS Research Center, Wuhan University, 129 Luoyu Road, Wuhan 430079, China

Abstract

Calving front location plays a crucial role in studying ice–ocean interaction, mapping glacier area change, and constraining ice dynamic models. However, relying solely on visual interpretation to extract annual changes in the calving front of ice shelves is a time-consuming process. In this study, a comparative analysis was conducted on the segmentation obtained from fully convolutional networks (FCN), U-Net, and U2-Net models, revealing that U2-Net exhibited the most effective classification. Notably, U2-Net outperformed the other two models by more than 30 percent in terms of the F1 parameter. Therefore, this paper introduces an automated approach that utilizes the U2-Net model to extract the calving front of ice shelves based on a Landsat image, achieving an extraction accuracy of 58 m. To assess the model’s performance on additional ice shelves in the polar region, the calving front of the Totten and Filchner ice shelves were also extracted for the past decade. The findings demonstrated that the ice velocity of the Filchner ice shelf exceeded that of the Totten ice shelf. Between February 2014 and March 2015, the majority of the calving fronts along the Filchner Ice Shelf showed an advancing trend, with the fastest-moving front measuring 3532 ± 58 m/yr.

Funder

National Natural Science Foundation of China

Fundamental Research Funds for the Central Universities

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3