Optimal Assimilation of Daytime SST Retrievals from SEVIRI in a Regional Ocean Prediction System

Author:

Storto AndreaORCID,Oddo Paolo

Abstract

Exploiting the potential of space-borne oceanic measurements to characterize the sub-surface structure of the ocean becomes critical in areas where deployment of in situ sensors might be difficult or expensive. Sea Surface Temperature (SST) observations potentially provide enormous amounts of information about the upper ocean variability. However, the assimilation of daytime SST retrievals, e.g., from infrared sensors into ocean prediction systems, requires a specific treatment of the diurnal cycle of skin SST, which is generally under-estimated in current ocean models due to poor vertical resolution at the air–sea interface and lack of proper parameterizations. To this end, a simple off-line bias correction scheme is proposed, where the bias predictors include, among others, the warm layer and cool skin warming/cooling deduced from a prognostic model. Furthermore, a localization procedure that limits the vertical penetration of the SST information in a hybrid variational-ensemble data assimilation system is formulated. These two novelties are implemented and assessed within a regional ocean prediction system in the Ligurian Sea for the assimilation of daytime SST data retrieved with hourly frequency from the Spinning Enhanced Visible and Infrared Imager (SEVIRI) onboard the geostationary satellite Meteosat-10. Experiments are validated against independent measurements collected by gliders, moorings, and drifters during the Long-term Glider Missions for Environmental Characterization (LOGCMEC17) sea trial. Results suggest that the simple bias correction scheme is effective in improving both the sea surface and mixed layer accuracy, correctly thinning the mixed layer compared to the control experiment, outperforming experiments with night-only data assimilation, and improving the forecast skill scores. Localization further improves the prediction of the mixed layer depth. It is therefore recommended that sophisticated bias correction and localization procedures are adopted for fruitfully assimilating daytime SST data in operational oceanographic analysis systems.

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3