Author:
Huang Ming,Wei Pengcheng,Liu Xianglei
Abstract
Plane segmentation is a basic yet important process in light detection and ranging (LiDAR) point cloud processing. The traditional point cloud plane segmentation algorithm is typically affected by the number of point clouds and the noise data, which results in slow segmentation efficiency and poor segmentation effect. Hence, an efficient encoding voxel-based segmentation (EVBS) algorithm based on a fast adjacent voxel search is proposed in this study. First, a binary octree algorithm is proposed to construct the voxel as the segmentation object and code the voxel, which can compute voxel features quickly and accurately. Second, a voxel-based region growing algorithm is proposed to cluster the corresponding voxel to perform the initial point cloud segmentation, which can improve the rationality of seed selection. Finally, a refining point method is proposed to solve the problem of under-segmentation in unlabeled voxels by judging the relationship between the points and the segmented plane. Experimental results demonstrate that the proposed algorithm is better than the traditional algorithm in terms of computation time, extraction accuracy, and recall rate.
Funder
National Key Research and Development Program of China
National Natural Science Foundation of China
Subject
General Earth and Planetary Sciences
Cited by
35 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献