Precise Orbit Determination of BDS-2 and BDS-3 Using SLR

Author:

Yang Honglei,Xu TianheORCID,Nie Wenfeng,Gao Fan,Guan Meiqian

Abstract

The BeiDou Navigation Satellite System (BDS) of China is currently in the hybrid-use period of BDS-2 and BDS-3 satellites. All of them are equipped with Laser Retroreflect Arrays (LRAs) for Satellite Laser Ranging (SLR), which can directly obtain an independent, sub-centimetre level of distance measurement. The main purpose of this contribution is to use the solely SLR Normal Points (NPs) data to determinate the precise orbit of BDS-2 and BDS-3 satellites, including one Geostationary Earth Orbit (GEO), three Inclined Geo-Synchronous Orbits (ISGO), and one Medium Earth Orbit (MEO) of BDS-2 satellites, as well as four MEO of BDS-3 satellites, from 1 January to 30 June 2019. The microwave-based orbit from Wuhan University (WUM) are firstly validated to mark and eliminate the bad SLR observations in our preprocessing stage. Then, the 3-, 5-, 7-, and 9-day arc solutions are performed to investigate the impact of the different orbital arc lengths on the quality of SLR-derived orbits and test the optimal solution of the multi-day arc. Moreover, the dependency of SLR-only orbit determination accuracy on the number of SLR observations and the number of SLR sites are discussed to explore the orbit determination quality of the 3-,5-, 7-, and 9-day arc solutions. The results indicate that (1) during the half-year time span of 2019, the overall Root Mean Square (RMS) of SLR validation residuals derived from WUM is 19.0 cm for BDS-2 GEO C01, 5.2–7.3 cm for three BDS-2 IGSO, 3.4 cm for BDS-2 MEO C11, and 4.4–5.7 cm for four BDS-3 MEO satellites respectively. (2) The 9-day arc solutions present the best orbit accuracy in our multi-day SLR-only orbit determination for BDS IGSO and MEO satellites. The 9-day overlaps median RMS of BDS MEO in RTN directions are evaluated at 3.6–5.7, 12.4–21.6, and 15.6–23.9 cm respectively, as well as 5.7–9.6, 15.0–36.8, and 16.5–35.2 cm for the comparison with WUM precise orbits, while these values of BDS IGSO are larger by a factor of about 3–10 than BDS MEO orbits in their corresponding RTN directions. Furthermore, the optimal average 3D-RMS of 9-day overlaps is 0.49 and 1.89 m for BDS MEO and IGSO respectively, as well as 0.55 and 1.85 m in comparison with WUM orbits. Owing to its extremely rare SLR observations, the SLR-only orbit determination accuracy of BDS-2 GEO satellite can only reach a level of 10 metres or worse. (3) To obtain a stable and reliable SLR-only precise orbit, the 7-day to 9-day arc solutions are necessary to provide a sufficient SLR observation quantity and geometry, with more than 50–80 available SLR observations at 5–6 SLR sites that are evenly distributed, both in the Northern and Southern Hemispheres.

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3