Geocenter Motions Derived from BDS Observations: Effects of the Solar Radiation Pressure Model and Constellation Configuration

Author:

Li Xingxing1,Huang Shi1ORCID,Yuan Yongqiang1,Zhang Keke1,Lou Jiaqing1

Affiliation:

1. School of Geodesy and Geomatics, Wuhan University, 129 Luoyu Road, Wuhan 430079, China

Abstract

As the first hybrid-constellation global navigation system, China’s BeiDou navigation satellite system (BDS) has been fully constructed since July 2020 and provides open services for worldwide users. Due to the natural sensitivity of satellite tracking techniques to geocenter motion, BDS has the capability to determine the geocenter coordinates (GCC). This study aims to improve the precision of geocenter coordinates derived from BDS. To that end, 3-year sets of daily geocenter coordinates have been determined with BDS observations. Different solar radiation pressure (SRP) models, including the empirical CODE orbit model (ECOM), the extended ECOM model (ECOM2), and the a priori box-wing along with the ECOM model (BW + ECOM), have been applied for the BDS geocenter estimation. We show that the BW + ECOM model is beneficial in recovering the geocenter motion. Compared to the ECOM, the BW + ECOM model appears to mitigate the draconitic signal of BDS, which reduces the annual amplitude of the GCC-Z by a factor of 2.9. On the other hand, the amplitude of the 3 cpy signal is also reduced by a factor of 2.9. Furthermore, we studied the impact of BDS constellation configuration on the geocenter estimation. The results indicate that the inclusion of IGSO satellites significantly mitigates the spurious signals in the spectra of the GCC-Z. The amplitudes of the annual signal and 3 cpy signal are reduced by (28%, 14%), (33%, 61%), and (31%, 9%) for ECOM, ECOM2, and BW + ECOM cases, respectively. Meanwhile, the amplitude of the 7-day signal related to the orbital period of MEO satellites is also reduced by 32–45%. Thus, the BW + ECOM model and the MEO+IGSO hybrid configuration are recommended for BDS to determine the geocenter coordinates. However, despite these improvements, a significant annual signal with an amplitude of 20.2 mm and a visible 3 cpy signal with an amplitude of 6.1 mm still exist when compared to the Satellite Laser Ranging (SLR) solution.

Funder

National Key Research and Development Program of China

National Natural Science Foundation of China

Hubei Province Natural Science Foundation

Sino-German mobility program

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

Reference43 articles.

1. Petit, G., and Luzum, B. (2011). IERS Conventions 2010: IERS Technical Note 36, Verlag des Bundesamts für Kartographie und Geodäsie.

2. Geocenter motions from GPS: A unified observation model;Blewitt;J. Geophys. Res. Solid Earth,2006

3. Geocenter variations derived from GPS tracking of the GRACE satellites;Kang;J. Geod.,2009

4. A New Global Mode of Earth Deformation: Seasonal Cycle Detected;Blewitt;Science,2001

5. Geocenter motion and its geodetic and geophysical implications;Wu;J. Geodyn.,2012

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3