Abstract
Lava domes grow by extrusions and intrusions of viscous magma often initiating from a central volcanic vent, and they are frequently defining the source region of hazardous explosive eruptions and pyroclastic density currents. Thus, close monitoring of dome building processes is crucial, but often limited to low data resolution, hazardous access, and poor visibility. Here, we investigated the 2016–2017 eruptive sequence of the dome building Bezymianny volcano, Kamchatka, with spot-mode TerraSAR-X acquisitions, and complement the analysis with webcam imagery and seismic data. Our results reveal clear morphometric changes preceding eruptions that are associated with intrusions and extrusions. Pixel offset measurements show >7 months of precursory plug extrusion, being locally defined and exceeding 30 m of deformation, chiefly without detected seismicity. After a short explosion, three months of lava dome evolution were characterised by extrusions and intrusion. Our data suggest that the growth mechanisms were significantly governed by magma supply rate and shallow upper conduit solidification that deflected magmatic intrusions into the uppermost parts of the dome. The integrated approach contributes significantly to a better understanding of precursory activity and complex growth interactions at dome building volcanoes, and shows that intrusive and extrusive growth is acting in chorus at Bezymianny volcano.
Funder
H2020 European Research Council
Subject
General Earth and Planetary Sciences
Cited by
23 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献