Estimating Above-Ground Biomass of Maize Using Features Derived from UAV-Based RGB Imagery

Author:

Niu Yaxiao,Zhang Liyuan,Zhang HuihuiORCID,Han Wenting,Peng Xingshuo

Abstract

The rapid, accurate, and economical estimation of crop above-ground biomass at the farm scale is crucial for precision agricultural management. The unmanned aerial vehicle (UAV) remote-sensing system has a great application potential with the ability to obtain remote-sensing imagery with high temporal-spatial resolution. To verify the application potential of consumer-grade UAV RGB imagery in estimating maize above-ground biomass, vegetation indices and plant height derived from UAV RGB imagery were adopted. To obtain a more accurate observation, plant height was directly derived from UAV RGB point clouds. To search the optimal estimation method, the estimation performances of the models based on vegetation indices alone, based on plant height alone, and based on both vegetation indices and plant height were compared. The results showed that plant height directly derived from UAV RGB point clouds had a high correlation with ground-truth data with an R2 value of 0.90 and an RMSE value of 0.12 m. The above-ground biomass exponential regression models based on plant height alone had higher correlations for both fresh and dry above-ground biomass with R2 values of 0.77 and 0.76, respectively, compared to the linear regression model (both R2 values were 0.59). The vegetation indices derived from UAV RGB imagery had great potential to estimate maize above-ground biomass with R2 values ranging from 0.63 to 0.73. When estimating the above-ground biomass of maize by using multivariable linear regression based on vegetation indices, a higher correlation was obtained with an R2 value of 0.82. There was no significant improvement of the estimation performance when plant height derived from UAV RGB imagery was added into the multivariable linear regression model based on vegetation indices. When estimating crop above-ground biomass based on UAV RGB remote-sensing system alone, looking for optimized vegetation indices and establishing estimation models with high performance based on advanced algorithms (e.g., machine learning technology) may be a better way.

Funder

Major Project of Industry -Education - Research Cooperative Innovation in Yangling Demonstration Zone in China

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3