Estimation of Maize Biomass at Multi-Growing Stage Using Stem and Leaf Separation Strategies with 3D Radiative Transfer Model and CNN Transfer Learning

Author:

Zhao Dan12,Yang Hao2ORCID,Yang Guijun2,Yu Fenghua1,Zhang Chengjian3,Chen Riqiang3,Tang Aohua4,Zhang Wenjie3ORCID,Yang Chen5,Xu Tongyu1

Affiliation:

1. School of Information and Electrical Engineering, Shenyang Agricultural University, Shenyang 110866, China

2. Key Laboratory of Quantitative Remote Sensing in Agriculture of Ministry of Agriculture and Rural Affairs, Information Technology Research Center, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China

3. School of Information Science and Technology, Beijing Forestry University, Beijing 100083, China

4. College of Geological Engineering and Geomatics, Chang’an University, Xi’an 710064, China

5. School of Surveying and Mapping Land Information Engineering, Henan Polytechnic University, Jiaozuo 454000, China

Abstract

The precise estimation of above-ground biomass (AGB) is imperative for the advancement of breeding programs. Optical variables, such as vegetation indices (VI), have been extensively employed in monitoring AGB. However, the limited robustness of inversion models remains a significant impediment to the widespread application of UAV-based multispectral remote sensing in AGB inversion. In this study, a novel stem–leaf separation strategy for AGB estimation is delineated. Convolutional neural network (CNN) and transfer learning (TL) methodologies are integrated to estimate leaf biomass (LGB) across multiple growth stages, followed by the development of an allometric growth model for estimating stem biomass (SGB). To enhance the precision of LGB inversion, the large-scale remote sensing data and image simulation framework over heterogeneous scenes (LESS) model, which is a three-dimensional (3D) radiative transfer model (RTM), was utilized to simulate a more extensive canopy spectral dataset, characterized by a broad distribution of canopy spectra. The CNN model was pre-trained in order to gain prior knowledge, and this knowledge was transferred to a re-trained model with a subset of field-observed samples. Finally, the allometric growth model was utilized to estimate SGB across various growth stages. To further validate the generalizability, transferability, and predictive capability of the proposed method, field samples from 2022 and 2023 were employed as target tasks. The results demonstrated that the 3D RTM + CNN + TL method outperformed best in LGB estimation, achieving an R² of 0.73 and an RMSE of 72.5 g/m² for the 2022 dataset, and an R² of 0.84 and an RMSE of 56.4 g/m² for the 2023 dataset. In contrast, the PROSAIL method yielded an R² of 0.45 and an RMSE of 134.55 g/m² for the 2022 dataset, and an R² of 0.74 and an RMSE of 61.84 g/m² for the 2023 dataset. The accuracy of LGB inversion was poor when using only field-measured samples to train a CNN model without simulated data, with R² values of 0.30 and 0.74. Overall, learning prior knowledge from the simulated dataset and transferring it to a new model significantly enhanced LGB estimation accuracy and model generalization. Additionally, the allometric growth model’s estimation of SGB resulted in an accuracy of 0.87 and 120.87 g/m² for the 2022 dataset, and 0.74 and 86.87 g/m² for the 2023 dataset, exhibiting satisfactory results. Separate estimation of both LGB and SGB based on stem and leaf separation strategies yielded promising results. This method can be extended to the monitor and inversion of other critical variables.

Funder

National Key Research and Development Program of China

Liaoning Applied Basic Research Program

Natural Science Foundation of China

Special Fund for Construction of Scientific and Technological Innovation Ability of Beijing Academy of Agriculture and Forestry Sciences

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3