Mean Shift Segmentation Assessment for Individual Forest Tree Delineation from Airborne Lidar Data

Author:

Xiao WenORCID,Zaforemska AleksandraORCID,Smigaj MagdalenaORCID,Wang YunshengORCID,Gaulton Rachel

Abstract

Airborne lidar has been widely used for forest characterization to facilitate forest ecological and management studies. With the availability of increasingly higher point density, individual tree delineation (ITD) from airborne lidar point clouds has become a popular yet challenging topic, due to the complexity and diversity of forests. One important step of ITD is segmentation, for which various methodologies have been studied. Among them, a long proven image segmentation method, mean shift, has been applied directly onto 3D points, and has shown promising results. However, there are variations among those who implemented the algorithm in terms of the kernel shape, adaptiveness and weighting. This paper provides a detailed assessment of the mean shift algorithm for the segmentation of airborne lidar data, and the effect of crown top detection upon the validation of segmentation results. The results from three different datasets revealed that a crown-shaped kernel consistently generates better results (up to 7 percent) than other variants, whereas weighting and adaptiveness do not warrant improvements.

Funder

Douglas Bomford Trust

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

Reference50 articles.

1. Forest Resilience, Biodiversity, and Climate Change;Thompson,2009

2. Remote Sensing for Sustainable Forest Management;Franklin,2001

3. LiDAR remote sensing of forest structure

4. Combining Tandem-X InSAR and simulated GEDI lidar observations for forest structure mapping

5. Detection of Individual Tree Crowns in Airborne Lidar Data

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3