Effect of Corrosion and Surface Finishing on Fatigue Behavior of Friction Stir Welded EN AW-5754 Aluminum Alloy Using Various Tool Configurations

Author:

Baqerzadeh Chehreh AbootorabORCID,Grätzel MichaelORCID,Bergmann Jean Pierre,Walther FrankORCID

Abstract

In this study, fatigue behavior of surface finished and precorroded friction stir welded (FSW) specimens using various tool configurations were comparatively investigated by the load increase method. The FSW using conventional, stationary shoulder and dual-rotational configurations was carried out by a robotized tool setup on 2 mm EN AW-5754 aluminum sheets in butt joint formation. After extraction of the specimens, their weld seam and root surfaces were milled to two different depths of 200 µm and 400 µm to remove the surface and the FSW tool shoulder effects. This surface finishing process was performed to investigate the effect of the surface defects on the fatigue behavior of the FSW EN AW-5754 aluminum alloy sheets. It was found that material removal from the weld and root surfaces of the specimens, increased the fracture stresses of conventional and dual-rotational FSW from 204 to 229 MPa and 196 to 226 MPa, respectively. However, this increase could not be detected in stationary shoulder FSW. Specimens with finished surfaces, which showed superior properties, were used in salt spray and cyclic climate change test to investigate the effect of corrosion on the fatigue behavior of FSW specimens. It was shown that cyclic climate change test reduced the fatigue properties of the base material, conventional, stationary shoulder and dual-rotational FSW approximately 1%–7%. This decrease in the fatigue properties was greater in the case of the salt spray test, which was 7% to 21%.

Publisher

MDPI AG

Subject

General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3