Wavelet-Based Kalman Smoothing Method for Uncertain Parameters Processing: Applications in Oil Well-Testing Data Denoising and Prediction

Author:

Feng XinORCID,Feng Qiang,Li Shaohui,Hou Xingwei,Zhang Mengqiu,Liu Shugui

Abstract

The low-distortion processing of well-testing geological parameters is a key way to provide decision-making support for oil and gas field development. However, the classical processing methods face many problems, such as the stochastic nature of the data, the randomness of initial parameters, poor denoising ability, and the lack of data compression and prediction mechanisms. These problems result in poor real-time predictability of oil operation status and difficulty in offline interpreting the played back data. Given these, we propose a wavelet-based Kalman smoothing method for processing uncertain oil well-testing data. First, we use correlation and reconstruction errors as analysis indicators and determine the optimal combination of decomposition scale and vanishing moments suitable for wavelet analysis of oil data. Second, we build a ground pressure measuring platform and use the pressure gauge equipped with the optimal combination parameters to complete the downhole online wavelet decomposition, filtering, Kalman prediction, and data storage. After the storage data are played back, the optimal Kalman parameters obtained by particle swarm optimization are used to complete the data smoothing for each sample. The experiments compare the signal-to-noise ratio and the root mean square error before and after using different classical processing models. In addition, robustness analysis is added. The proposed method, on the one hand, has the features of decorrelation and compressing data, which provide technical support for real-time uploading of downhole data; on the other hand, it can perform minimal variance unbiased estimates of the data, filter out the interference and noise, reduce the reconstruction error, and make the data have a high resolution and strong robustness.

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Cited by 9 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3