Outlier detection and selection of representative fluid samples using machine learning: a case study of Iranian oil fields

Author:

Hosseini MahdiORCID,Zaheri Seyed Hayan,Roosta Ali

Abstract

AbstractDuring the development of a field, many fluid samples are taken from wells. Selecting a robust fluid sample as the reservoir representative helps to have a better field characterization, reliable reservoir simulation, valid production forecast, efficient well placement and finally achieving optimized ultimate recovery. First, this paper aims to detect and separate the samples that have been collected under poor conditions or analyzed in a non-standard way. Moreover, it introduces a novel ranking method to score the samples based on the amount of coordination with other fluid samples in the region. The dataset includes 136 fluid samples from five reservoirs in Iranian fields, each of them consisting of 21 key parameters. Five acknowledged machine learning based anomaly detection techniques are implemented to compare fluid samples and detect those whose results deviate from others, indicating non-standard samples. To ensure the proper detection of outlier data, the results are compared with the traditional validation method of gas-oil ratio estimation. All five outlier detection methods demonstrate acceptable performance with average accuracy of 79% compared to traditional validation. Furthermore, the fluid samples with the highest scores in scoring-based algorithms are introduced as the best reservoir’s representative fluid. Finally, fuzzy logic is used to obtain a final score for each sample, taking the results of the six methods as input and ranking the samples based on their output score. The study confirms the robustness of the novel approach for fluid validation using outlier detection techniques and the value of machine learning and fuzzy logic for sample ranking, excelling in considering all critical fluid parameters simultaneously over traditional methods.

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3