Modeling Two-Person Segmentation and Locomotion for Stereoscopic Action Identification: A Sustainable Video Surveillance System

Author:

Khalid Nida,Gochoo Munkhjargal,Jalal Ahmad,Kim KibumORCID

Abstract

Due to the constantly increasing demand for automatic tracking and recognition systems, there is a need for more proficient, intelligent and sustainable human activity tracking. The main purpose of this study is to develop an accurate and sustainable human action tracking system that is capable of error-free identification of human movements irrespective of the environment in which those actions are performed. Therefore, in this paper we propose a stereoscopic Human Action Recognition (HAR) system based on the fusion of RGB (red, green, blue) and depth sensors. These sensors give an extra depth of information which enables the three-dimensional (3D) tracking of each and every movement performed by humans. Human actions are tracked according to four features, namely, (1) geodesic distance; (2) 3D Cartesian-plane features; (3) joints Motion Capture (MOCAP) features and (4) way-points trajectory generation. In order to represent these features in an optimized form, Particle Swarm Optimization (PSO) is applied. After optimization, a neuro-fuzzy classifier is used for classification and recognition. Extensive experimentation is performed on three challenging datasets: A Nanyang Technological University (NTU) RGB+D dataset; a UoL (University of Lincoln) 3D social activity dataset and a Collective Activity Dataset (CAD). Evaluation experiments on the proposed system proved that a fusion of vision sensors along with our unique features is an efficient approach towards developing a robust HAR system, having achieved a mean accuracy of 93.5% with the NTU RGB+D dataset, 92.2% with the UoL dataset and 89.6% with the Collective Activity dataset. The developed system can play a significant role in many computer vision-based applications, such as intelligent homes, offices and hospitals, and surveillance systems.

Publisher

MDPI AG

Subject

Management, Monitoring, Policy and Law,Renewable Energy, Sustainability and the Environment,Geography, Planning and Development

Cited by 52 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. The Role of the Combination of 3D Simulation Sequence Diagram and Video Motion Recognition Technology in Evaluating and Correcting Dancers' Dance Moves;International Journal of Mobile Computing and Multimedia Communications;2024-07-17

2. Temporal Receptive Field Graph Convolutional Network for Skeleton-Based Action Recognition;2024 International Technical Conference on Circuits/Systems, Computers, and Communications (ITC-CSCC);2024-07-02

3. Vehicle Detection and Classification via YOLOv4 and CNN over Aerial Images;2024 International Conference on Engineering & Computing Technologies (ICECT);2024-05-23

4. Biosensor-Driven IoT Wearables for Accurate Body Motion Tracking and Localization;Sensors;2024-05-10

5. Pattern Analytics of Healthy and Diseased Leaves Recognition using Genetic Algorithm;2024 5th International Conference on Advancements in Computational Sciences (ICACS);2024-02-19

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3