Mechanical Properties and Microstructural Features of Biomass Fly Ash-Modified Self-Compacting Coal Gangue-Filled Backfill

Author:

Han Guang1,Qin Zhifa2ORCID,Zuo Shenghao3

Affiliation:

1. College of Safety Science and Engineering, Liaoning Technical University, Fuxin 123000, China

2. School of Civil Engineering, Liaoning Technical University, Fuxin 123000, China

3. School of Civil Engineering, Central South University, Changsha 410075, China

Abstract

To achieve sustainable utilization of a large amount of mine solid waste, this study investigated the performance of self-compacting coal gangue-filled backfill (SCFB) containing biomass fly ash (BFA) generated from biomass power plants as a supplementary cementitious material (SCM). The correlations between the physical structure and compressive strength of SCFB samples were obtained by ultrasonic pulse velocity (UPV). The failure process of the SCFB samples was monitored by the digital image correlation (DIC) technique, and the stress–strain relationship and failure pattern were also analyzed. The micro-morphological structure and hydration products of SCFB samples were evaluated by X-ray diffraction (XRD), scanning electron microscopy (SEM), and backscattered electron imaging (SEM-BSE). The results show that the usage of 30~40% BFA in SCFB improves the physical structure and strength of the samples. The compressive strength and UPV value of SCFB samples with different water-to-cement (w/c) ratios showed a similar trend of increasing and then gradually decreasing as the proportion of ordinary Portland cement (OPC) replaced by BFA increased. BFA exhibits better reactivity and filling effect in SCFB samples with a high w/c ratio. The peak stress of SCFB samples gradually decreases, and resistance to deformation gradually weakens with the increase in w/c ratios, while the DIC results further verify the mechanical experimental results. Microstructural analysis revealed that reducing the w/c ratio and incorporating specific ratios of BFA can reduce the thickness of the interface transition zone (ITZ) and porosity. The results of the study will provide theoretical guidance for the modification, stability monitoring, and strengthening of SCFB.

Funder

Sichuan Province Key Laboratory of Higher Education Institutions for Comprehensive Development and Utilization of Industrial Solid Waste in Civil Engineering

Publisher

MDPI AG

Subject

General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3