Two-Dimensional Microstructure-Based Model for Evaluating the Permeability Coefficient of Heterogeneous Construction Materials

Author:

Chen Jiaqi1ORCID,Yu Shujun1,Huang Wei2,Wang Hao2ORCID

Affiliation:

1. Department of Civil Engineering, Central South University, Changsha 410075, China

2. Department of Civil and Environmental Engineering, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA

Abstract

The permeability coefficient of construction materials plays a crucial role in engineering quality and durability. In this study, a microstructure model based on real aggregate shape and digital image technology is proposed to predict the permeability coefficient of concrete. A two-dimensional, three-component finite element model of cement concrete was established considering the interfacial transition zone (ITZ) between aggregate and mortar. The permeability coefficient prediction model was developed by the finite element method. The accuracy of the model was verified by experimental data, and the influence of the water−cement ratio on the permeability coefficient of concrete was analyzed. The results show that this method has good prediction accuracy with a relative error of 1.73%. According to the verified model, the influences of aggregate content, aggregate characteristics, aggregate location, ITZ thickness, and other factors on the permeability of concrete were explored. The higher the water−cement ratio, the higher the permeability coefficient. With the increase in aggregate content, the permeability coefficient decreases. Aggregate permeability has a significant influence on the effective permeability coefficient of concrete within a certain range. The greater the roundness of aggregate, the greater the permeability of concrete. On the contrary, the larger aggregate size causes lower permeability. The permeability coefficient of concrete with segregation is lower than that with uniform distribution. At the same time, the permeability increases with the increase of ITZ thickness.

Funder

Hunan Transportation Science and Technology Foundation

Publisher

MDPI AG

Subject

General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3