Application of Nano-Crystalline Diamond in Tribology

Author:

Xia Yue12,Lu Yunxiang2,Yang Guoyong2,Chen Chengke1,Hu Xiaojun1,Song Hui2,Deng Lifen2,Wang Yuezhong2,Yi Jian2ORCID,Wang Bo3

Affiliation:

1. College of Materials Science and Engineering, Zhejiang University of Technology, Hangzhou 310014, China

2. Key Laboratory of Marine Materials and Related Technologies, Zhejiang Key Laboratory of Marine Materials and Protective Technologies, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, China

3. Chair of Functional Materials, Department of Materials Science & Engineering, Saarland University, 66123 Saarbrücken, Germany

Abstract

Nano-crystalline diamond has been extensively researched and applied in the fields of tribology, optics, quantum information and biomedicine. In virtue of its hardness, the highest in natural materials, diamond outperforms the other materials in terms of wear resistance. Compared to traditional single-crystalline and poly-crystalline diamonds, nano-crystalline diamond consists of disordered grains and thus possesses good toughness and self-sharpening. These merits render nano-crystalline diamonds to have great potential in tribology. Moreover, the re-nucleation of nano-crystalline diamond during preparation is beneficial to decreasing surface roughness due to its ultrafine grain size. Nano-crystalline diamond coatings can have a friction coefficient as low as single-crystal diamonds. This article briefly introduces the approaches to preparing nano-crystalline diamond materials and summarizes their applications in the field of tribology. Firstly, nano-crystalline diamond powders can be used as additives in both oil- and water-based lubricants to significantly enhance their anti-wear property. Nano-crystalline diamond coatings can also act as self-lubricating films when they are deposited on different substrates, exhibiting excellent performance in friction reduction and wear resistance. In addition, the research works related to the tribological applications of nano-crystalline diamond composites have also been reviewed in this paper.

Funder

National Key R&D Program of China

the Project of Chinese Academy of Science

Ningbo 3315 Innovation Team

the Youth Fund of Chinese Academy of Sciences

Science and Technology Major Project of Ningbo

the Yongjiang Talent Introduction Program of Ningbo

Alexander von Humboldt Foundation

Publisher

MDPI AG

Subject

General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3