Nonlinear Strength Reduction Method of Rock Mass in Slope Stability Evaluation

Author:

Chen Yifan1ORCID,Chen Yizhou1,Lin Hang1ORCID,Hu Huihua12

Affiliation:

1. School of Resources and Safety Engineering, Central South University, Changsha 410083, China

2. Hunan Provincial Communications Planning, Survey and Design Institute, Changsha 410200, China

Abstract

As the strength parameters of rock mass degrade differently during slope instability, different factors should be considered in the strength reduction method. Previous nonlinear reduction methods were essentially implemented based on the Mohr–Coulomb criterion, which was reported not to reflect the nonlinear performance of rock mass. To address this deficiency, in this study, the Hoek–Brown criterion was combined with a nonlinear reduction technique for slope stability evaluation. Firstly, based on the classical definition of safety factors, the relationships that should be satisfied by each parameter of the critical slope were derived. The critical curve of the slope regarding the Hoek–Brown constant mb and the uniaxial compressive strength of rock mass σcmass was then obtained. On the assumption that the slope parameter deterioration conforms to the shortest path theory, the reduction ratio of σcmass to mb was determined. The more objective k-means algorithm was employed to automatically search the potential sliding surface, on which the slope safety factor was calculated as the ratio of sliding resistance to sliding force. Finally, the slopes in published literature were adopted for verification, and the calculated safety factors were compared with those by other methods, which showed better efficacy.

Funder

Key Laboratory of Natural Resources Monitoring and Supervision in Southern Hilly Region

Ministry of Natural Resources, Hunan Provincial Key Research and Development Program

National Natural Science Foundation of China

Science and Technology Progress and Innovation Plan of Hunan Provincial Department of Transportation

Publisher

MDPI AG

Subject

General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3