Slope Stability Prediction Using Principal Component Analysis and Hybrid Machine Learning Approaches

Author:

Lei Daxing12,Zhang Yaoping12,Lu Zhigang12,Lin Hang3ORCID,Fang Bowen4,Jiang Zheyuan4

Affiliation:

1. School of Resources and Architectural Engineering, GanNan University of Science and Technology, Ganzhou 341000, China

2. Key Laboratory of Mine Geological Disaster Prevention and Control and Ecological Restoration, Ganzhou 341000, China

3. School of Resources and Safety Engineering, Central South University, Changsha 410083, China

4. Jiangsu Key Laboratory of Urban Underground Engineering and Environmental Safety, Institute of Geotechnical Engineering, Southeast University, Nanjing 210096, China

Abstract

Traditional slope stability analysis methods are time-consuming, complex, and cannot provide fast stability estimates when facing a large amount of slope cases. In this case, artificial neural networks (ANN) provide a better alternative. Based on the ANN, the particle swarm optimization (PSO) algorithm, and the principal component analysis (PCA) method, a novel PCA-PANN model is proposed. Then, a dataset of 307 slope cases covering a wide range of slope geometries and mechanical properties of geomaterial is developed. The hybrid machine learning model trained with the dataset is applied to the factor of safety (FoS) prediction of the actual slope, and three evaluation indicators are introduced to measure the prediction performance of the model. Finally, the sensitivity analysis of input parameters is carried out, and the slope protection strategy for different sensitive factors is proposed. The results show that this new model can quickly obtain the FoS and stable state of the slope without complex calculation, only by providing the relevant characteristic parameters. The correlation coefficient of the PCA-PANN model for slope stability analysis reaches more than 0.97. The sensitivity degree of influencing factors from large to small is slope angle, cohesion, pore pressure ratio, slope height, unit weight, and friction angle.

Funder

Jiangxi Province Higher Education Teaching Reform Research Project

Jiangxi Provincial Department of Education Science and technology research Program

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3