Digital Soil Texture Mapping and Spatial Transferability of Machine Learning Models Using Sentinel-1, Sentinel-2, and Terrain-Derived Covariates

Author:

Mirzaeitalarposhti RezaORCID,Shafizadeh-Moghadam Hossein,Taghizadeh-Mehrjardi RuhollahORCID,Demyan Michael ScottORCID

Abstract

Soil texture is an important property that controls the mobility of the water and nutrients in soil. This study examined the capability of machine learning (ML) models in estimating soil texture fractions using different combinations of remotely sensed data from Sentinel-1 (S1), Sentinel-2 (S2), and terrain-derived covariates (TDC) across two contrasting agroecological regions in Southwest Germany, Kraichgau and the Swabian Alb. Importantly, we tested the predictive power of three different ML models: the random forest (RF), the support vector machine (SVM), and extreme gradient boosting (XGB) coupled with the remote sensing data covariates. As expected, ML model performance was not consistent regarding the input covariates, soil texture fractions, and study regions. For example, in the Swabian Alb, the SVM model performed the best for the sand content with S2 + TDC (RMSE = 3.63%, R2 = 0.42), and XGB best predicted the clay content with S1 + S2 + TDC (RMSE = 6.84%, R2 = 0.64). In Kraichgau, the best models for sand (RMSE = 7.54%, R2 = 0.79) and clay contents (RMSE = 6.14%, R2 = 0.48) were obtained using XGB and SVM, respectively. Moreover, the results indicated that TDC were critical in estimating soil texture fractions, especially in Kraichgau, which indicated that topography plays an important role in defining the spatial distribution of soil properties. In contrast, the contribution of remote sensing data better predicted the silt and clay content in the Swabian Alb. The transferability of a region-specific model to the other region was low as indicated by poor predictive performance. The resulting soil-texture-fraction maps could be a significant source of information for efficient land resource management and environmental monitoring. Nonetheless, further research to evaluate the added value of the Sentinel imagery and to better analyze the spatial transferability of machine learning models is highly recommended.

Funder

Alexander von Humboldt Foundation

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3