Toward Flexible Soil Texture Detection by Exploiting Deep Spectrum and Texture Coding

Author:

Ma Ruijun1ORCID,Jiang Jun1,Ouyang Lin1,Yang Qingying1,Du Jiongxuan1,Wu Shuanglong1ORCID,Qi Long2,Hou Junwei3,Xing Hang1ORCID

Affiliation:

1. College of Engineering, South China Agricultural University, Guangzhou 510642, China

2. College of Water Conservancy and Civil Engineering, South China Agricultural University, Guangzhou 510642, China

3. School of Automobile and Construction Machinery, Guangdong Communication Polytechnic, Guangzhou 510650, China

Abstract

Soil texture is a significant attribute of soil properties. Obtaining insight into the soil texture is beneficial when making agricultural decisions during production. Nevertheless, assessing the soil texture in specific laboratory conditions entails substantial dedication, which is time-consuming and includes a high cost. In this paper, we propose a soil texture detection network by embedding the frequency channel attention network and a texture encoding network into the representation learning paradigm of the ResNet framework. Concretely, the former is reliable in exploiting the feature correlations among multi-frequency, while the latter focuses on encoding feature variables, jointly enhancing the ability of feature expression. Meanwhile, the clay, silt, and sand particles present in the soil are exported through a ResNet18 fully linked layer. Experimental results show that the correlation coefficient for predicting clay, silt, and sand content are 0.931, 0.936, and 0.957, respectively. For the root mean square error, the quantitative scores are 2.106%, 3.390%, and 3.602%, respectively. The proposed network also exhibits proposing generalization capability, yielding quite considerable results on different soil samples. Notably, the detection results are almost in agreement with the conventional laboratory measurements, and, at the same time, outperform other competitors, making it highly attractive for practical applications.

Funder

National Key Research and Development Program of China

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3