Patch-Based Discriminative Learning for Remote Sensing Scene Classification

Author:

Muhammad UsmanORCID,Hoque Md ZiaulORCID,Wang Weiqiang,Oussalah MouradORCID

Abstract

The research focus in remote sensing scene image classification has been recently shifting towards deep learning (DL) techniques. However, even the state-of-the-art deep-learning-based models have shown limited performance due to the inter-class similarity and the intra-class diversity among scene categories. To alleviate this issue, we propose to explore the spatial dependencies between different image regions and introduce patch-based discriminative learning (PBDL) for remote sensing scene classification. In particular, the proposed method employs multi-level feature learning based on small, medium, and large neighborhood regions to enhance the discriminative power of image representation. To achieve this, image patches are selected through a fixed-size sliding window, and sampling redundancy, a novel concept, is developed to minimize the occurrence of redundant features while sustaining the relevant features for the model. Apart from multi-level learning, we explicitly impose image pyramids to magnify the visual information of the scene images and optimize their positions and scale parameters locally. Motivated by this, a local descriptor is exploited to extract multi-level and multi-scale features that we represent in terms of a codeword histogram by performing k-means clustering. Finally, a simple fusion strategy is proposed to balance the contribution of individual features where the fused features are incorporated into a bidirectional long short-term memory (BiLSTM) network. Experimental results on the NWPU-RESISC45, AID, UC-Merced, and WHU-RS datasets demonstrate that the proposed approach yields significantly higher classification performance in comparison with existing state-of-the-art deep-learning-based methods.

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3