Ship Classification in SAR Imagery by Shallow CNN Pre-Trained on Task-Specific Dataset with Feature Refinement

Author:

Lang HaitaoORCID,Wang RuifuORCID,Zheng Shaoying,Wu Siwen,Li Jialu

Abstract

Ship classification based on high-resolution synthetic aperture radar (SAR) imagery plays an increasingly important role in various maritime affairs, such as marine transportation management, maritime emergency rescue, marine pollution prevention and control, marine security situational awareness, and so on. The technology of deep learning, especially convolution neural network (CNN), has shown excellent performance on ship classification in SAR images. Nevertheless, it still has some limitations in real-world applications that need to be taken seriously by researchers. One is the insufficient number of SAR ship training samples, which limits the learning of satisfactory CNN, and the other is the limited information that SAR images can provide (compared with natural images), which limits the extraction of discriminative features. To alleviate the limitation caused by insufficient training datasets, one of the widely adopted strategies is to pre-train CNNs on a generic dataset with massive labeled samples (such as ImageNet) and fine-tune the pre-trained network on the target dataset (i.e., a SAR dataset) with a small number of training samples. However, recent studies have shown that due to the different imaging mechanisms between SAR and natural images, it is hard to guarantee that the pre-trained CNNs (even if they perform extremely well on ImageNet) can be finely tuned by a SAR dataset. On the other hand, to extract the most discriminative ship representation features from SAR images, the existing methods have carried out fruitful research on network architecture design, attention mechanism embedding, feature fusion, etc. Although these efforts improve the performance of SAR ship classification to some extent, they are usually based on more complex network architecture and higher dimensional features, accompanied by more time-consuming storage expenses. Through the analysis of SAR image characteristics and CNN feature extraction mechanism, this study puts forward three hypotheses: (1) Pre-training CNN on a task-specific dataset may be more effective than that on a generic dataset; (2) a shallow CNN may be more suitable for SAR image feature extraction than a deep one; and (3) the deep features extracted by CNNs can be further refined to improve the feature discrimination ability. To validate these hypotheses, we propose to learn a shallow CNN which is pre-trained on a task-specific dataset, i.e., the optical remote sensing ship dataset (ORS) instead of on the widely adopted ImageNet dataset. For comparison purposes, we designed 28 CNN architectures by changing the arrangement of the CNN components, the size of convolutional filters, and pooling formulations based on VGGNet models. To further reduce redundancy and improve the discrimination ability of the deep features, we propose to refine deep features by active convolutional filter selection based on the coefficient of variation (COV) sorting criteria. Extensive experiments not only prove that the above hypotheses are valid but also prove that the shallow network learned by the proposed pre-training strategy and the feature refining method can achieve considerable ship classification performance in SAR images like the state-of-the-art (SOTA) methods.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3