Estimating All-Weather Surface Longwave Radiation from Satellite Passive Microwave Data

Author:

Jiao ZhonghuORCID

Abstract

Surface longwave radiation (SLR) is an essential geophysical parameter of Earth’s energy balance, and its estimation based on thermal infrared (TIR) remote sensing data has been extensively studied. However, it is difficult to estimate cloudy SLR from TIR measurements. Satellite passive microwave (PMW) radiometers measure microwave radiation under the clouds and therefore can estimate SLR in all weather conditions. We constructed SLR retrieval models using brightness temperature (BT) data from an Advanced Microwave Scanning Radiometer 2 (AMSR2) based on a neural network (NN) algorithm. SLR from the European Centre for Medium-Range Weather Forecasts Reanalysis v5 (ERA5) product was used as the reference. NN-based models were able to reproduce well the spatial variability of SLR from ERA5 at the global scale. Validations indicate a reasonably good performance was found for land sites, with a bias of 1.32 W/m2, root mean squared error (RMSE) of 35.37 W/m2, and coefficient of determination (R2) of 0.89 for AMSR2 surface upward longwave radiation (SULR) data, and a bias of −2.26 W/m2, RMSE of 32.94 W/m2, and R2 of 0.82 for AMSR2 surface downward longwave radiation (SDLR) data. AMSR2 SULR and SDLR retrieval accuracies were higher for oceanic sites, with biases of −2.98 and −4.04 W/m2, RMSEs of 6.50 and 13.42 W/m2, and R2 values of 0.83 and 0.66, respectively. This study provides a solid foundation for the development of a PMW SLR retrieval model applicable at the global scale to generate long-term continuous SLR products using multi-year satellite PMW data and for future research with a higher spatiotemporal resolution.

Funder

National Key Research and Development Program of China

National Natural Science Foundation of China

Basic Science Research Plan of the Institute of Geology, China Earthquake Administration

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

Reference61 articles.

1. Remote sensing of earth’s energy budget: Synthesis and review;Int. J. Digit. Earth,2019

2. The global energy balance as represented in CMIP6 climate models;Clim. Dyn.,2020

3. Decadal changes in radiative fluxes at land and ocean surfaces and their relevance for global warming;WIREs Clim. Chang.,2015

4. Amplification of El Niño by cloud longwave coupling to atmospheric circulation;Nat. Geosci.,2016

5. Validation and comparison of surface shortwave and longwave radiation products over the three poles;Int. J. Appl. Earth Obs. Geoinf.,2021

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3