Abstract
Surface longwave radiation (SLR) is an essential geophysical parameter of Earth’s energy balance, and its estimation based on thermal infrared (TIR) remote sensing data has been extensively studied. However, it is difficult to estimate cloudy SLR from TIR measurements. Satellite passive microwave (PMW) radiometers measure microwave radiation under the clouds and therefore can estimate SLR in all weather conditions. We constructed SLR retrieval models using brightness temperature (BT) data from an Advanced Microwave Scanning Radiometer 2 (AMSR2) based on a neural network (NN) algorithm. SLR from the European Centre for Medium-Range Weather Forecasts Reanalysis v5 (ERA5) product was used as the reference. NN-based models were able to reproduce well the spatial variability of SLR from ERA5 at the global scale. Validations indicate a reasonably good performance was found for land sites, with a bias of 1.32 W/m2, root mean squared error (RMSE) of 35.37 W/m2, and coefficient of determination (R2) of 0.89 for AMSR2 surface upward longwave radiation (SULR) data, and a bias of −2.26 W/m2, RMSE of 32.94 W/m2, and R2 of 0.82 for AMSR2 surface downward longwave radiation (SDLR) data. AMSR2 SULR and SDLR retrieval accuracies were higher for oceanic sites, with biases of −2.98 and −4.04 W/m2, RMSEs of 6.50 and 13.42 W/m2, and R2 values of 0.83 and 0.66, respectively. This study provides a solid foundation for the development of a PMW SLR retrieval model applicable at the global scale to generate long-term continuous SLR products using multi-year satellite PMW data and for future research with a higher spatiotemporal resolution.
Funder
National Key Research and Development Program of China
National Natural Science Foundation of China
Basic Science Research Plan of the Institute of Geology, China Earthquake Administration
Subject
General Earth and Planetary Sciences
Reference61 articles.
1. Remote sensing of earth’s energy budget: Synthesis and review;Int. J. Digit. Earth,2019
2. The global energy balance as represented in CMIP6 climate models;Clim. Dyn.,2020
3. Decadal changes in radiative fluxes at land and ocean surfaces and their relevance for global warming;WIREs Clim. Chang.,2015
4. Amplification of El Niño by cloud longwave coupling to atmospheric circulation;Nat. Geosci.,2016
5. Validation and comparison of surface shortwave and longwave radiation products over the three poles;Int. J. Appl. Earth Obs. Geoinf.,2021
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献