Abstract
AbstractA plausible simulation of the global energy balance is a first-order requirement for a credible climate model. Here I investigate the representation of the global energy balance in 40 state-of-the-art global climate models participating in the Coupled Model Intercomparison Project phase 6 (CMIP6). In the CMIP6 multi-model mean, the magnitudes of the energy balance components are often in better agreement with recent reference estimates compared to earlier model generations on a global mean basis. However, the inter-model spread in the representation of many of the components remains substantial, often on the order of 10–20 Wm−2 globally, except for aspects of the shortwave clear-sky budgets, which are now more consistently simulated by the CMIP6 models. The substantial inter-model spread in the simulated global mean latent heat fluxes in the CMIP6 models, exceeding 20% (18 Wm−2), further implies also large discrepancies in their representation of the global water balance. From a historic perspective of model development over the past decades, the largest adjustments in the magnitudes of the simulated present-day global mean energy balance components occurred in the shortwave atmospheric clear-sky absorption and the surface downward longwave radiation. Both components were gradually adjusted upwards over several model generations, on the order of 10 Wm−2, to reach 73 and 344 Wm−2, respectively in the CMIP6 multi-model means. Thereby, CMIP6 has become the first model generation that largely remediates long-standing model deficiencies related to an overestimation in surface downward shortwave and compensational underestimation in downward longwave radiation in its multi-model mean.
Funder
Schweizerischer Nationalfonds zur Förderung der Wissenschaftlichen Forschung
Publisher
Springer Science and Business Media LLC
Cited by
120 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献