Evaluating Data Inter-Operability of Multiple UAV–LiDAR Systems for Measuring the 3D Structure of Savanna Woodland

Author:

Bartholomeus HarmORCID,Calders KimORCID,Whiteside TimORCID,Terryn LouiseORCID,Krishna Moorthy Sruthi M.ORCID,Levick Shaun R.ORCID,Bartolo RenéeORCID,Verbeeck HansORCID

Abstract

For vegetation monitoring, it is crucial to understand which changes are caused by the measurement setup and which changes are true representations of vegetation dynamics. UAV–LiDAR offers great possibilities to measure vegetation structural parameters; however, UAV–LiDAR sensors are undergoing rapid developments, and the characteristics are expected to keep changing over the years, which will introduce data inter-operability issues. Therefore, it is important to determine whether datasets acquired by different UAV–LiDAR sensors can be interchanged and if changes through time can accurately be derived from UAV–LiDAR time series. With this study, we present insights into the magnitude of differences in derived forest metrics in savanna woodland when three different UAV–LiDAR systems are being used for data acquisition. Our findings show that all three systems can be used to derive plot characteristics such as canopy height, canopy cover, and gap fractions. However, there are clear differences between the metrics derived with different sensors, which are most apparent in the lower parts of the canopy. On an individual tree level, all UAV–LiDAR systems are able to accurately capture the tree height in a savanna woodland system, but significant differences occur when crown parameters are measured with different systems. Less precise systems result in underestimations of crown areas and crown volumes. When comparing UAV–LiDAR data of forest areas through time, it is important to be aware of these differences and ensure that data inter-operability issues do not influence the change analysis. In this paper, we want to stress that it is of utmost importance to realise this and take it into consideration when combining datasets obtained with different sensors.

Funder

Belgian Science Policy Office

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3