Robust retrieval of forest canopy structural attributes using multi‐platform airborne LiDAR

Author:

Zhang Beibei1ORCID,Fischer Fabian J.1,Prober Suzanne M.2,Yeoh Paul B.3,Gosper Carl R.45ORCID,Zdunic Katherine4,Jucker Tommaso1ORCID

Affiliation:

1. School of Biological Sciences, University of Bristol 24 Tyndall Avenue Bristol BS8 1TQ UK

2. CSIRO Environment Canberra 2601 Australian Capital Territory Australia

3. CSIRO Health and Biosecurity Floreat 6014 Western Australia Australia

4. Biodiversity and Conservation Science, Department of Biodiversity, Conservation and Attractions Kensington 6151 Western Australia Australia

5. CSIRO Environment Floreat 6014 Western Australia Australia

Abstract

AbstractLiDAR data acquired from airplanes and helicopters – known as airborne laser scanning (ALS) – are widely regarded as the gold standard for characterizing the 3D structure of forests at scale. But in the last decade, advances in unoccupied aerial vehicle (UAV) technologies have led to a rapid rise in the use of UAV laser scanning (ULS) for mapping forest structure. As both ALS and ULS data become increasingly available, they are being used to derive an ever‐growing number of metrics designed to measure different facets of canopy structure. However, which metrics can be robustly retrieved from both ALS and ULS platforms remains unclear. To address this question, we acquired coincident, high‐density ALS and ULS scans covering 115 plots (4‐ha in size) in an open‐canopy temperate ecosystem in Western Australia. Using this unique dataset, we quantified 32 canopy structural metrics related to canopy height, openness and heterogeneity, including metrics calculated directly from the point clouds and ones measured from derived canopy height models (CHM). Overall, we found that ALS and ULS‐derived metrics were strongly correlated (r2 = 0.90). However, this high degree of correlation masked considerable systematic differences between platforms. Specifically, point cloud metrics were less strongly (r2 = 0.87) correlated and had higher bias (10.7%) compared to CHM‐derived ones (r2 = 0.98; bias = 2.5%). Similarly, metrics of canopy openness and heterogeneity were less strongly correlated (r2 = 0.84 and 0.87) and exhibited greater bias (14.4 and 7.9%) than ones relating to canopy height (r2 = 0.96; bias = 3.8%). Our results indicate that only a small subset of the 32 metrics we tested were directly comparable between ALS and ULS platforms. Consequently, future efforts to combine laser scanning data across platforms and instruments should think carefully about which metrics are most appropriate, especially when working with point cloud data.

Funder

Natural Environment Research Council

China Scholarship Council

Publisher

Wiley

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3