Quantum Transport in Large-Scale Patterned Nitrogen-Doped Graphene

Author:

Lorentzen Aleksander Bach1ORCID,Bouatou Mehdi2,Chacon Cyril2,Dappe Yannick J.3,Lagoute Jérôme2,Brandbyge Mads1ORCID

Affiliation:

1. Department of Physics, Technical University of Denmark, DK-2800 Kongens Lyngby, Denmark

2. Laboratoire Matériaux et Phénomènes Quantiques, CNRS-Université Paris Cité, 10 Rue Alice Domon et Léonie Duquet, CEDEX 13, 75205 Paris, France

3. SPEC, CEA, CNRS, Université Paris-Saclay, CEA Saclay, CEDEX, 91191 Gif-sur-Yvette, France

Abstract

It has recently been demonstrated how the nitrogen dopant concentration in graphene can be controlled spatially on the nano-meter scale using a molecular mask. This technique may be used to create ballistic electron optics-like structures of high/low doping regions; for example, to focus electron beams, harnessing the quantum wave nature of the electronic propagation. Here, we employ large-scale Greens function transport calculations based on a tight-binding approach. We first benchmark different tight-binding models of nitrogen in graphene with parameters based on density functional theory (DFT) and the virtual crystal approximation (VCA). Then, we study theoretically how the random distribution within the masked regions and the discreteness of the nitrogen scattering centers impact the transport behavior of sharp n−p and n−n′ interfaces formed by different, realistic nitrogen concentrations. We investigate how constrictions for the current can be realized by patterned high/low doping regions with experimentally feasible nitrogen concentrations. The constrictions can guide the electronic current, while the quantized conductance is significantly washed out due to the nitrogen scattering. The implications for device design is that a p−n junction with nitrogen corrugation should still be viable for current focusing. Furthermore, a guiding channel with less nitrogen in the conducting canal preserves more features of quantized conductance and, therefore, its low-noise regime.

Funder

Independent Research Fund Denmark

Publisher

MDPI AG

Subject

General Materials Science,General Chemical Engineering

Reference42 articles.

1. Exceptional ballistic transport in epitaxial graphene nanoribbons;Baringhaus;Nature,2014

2. Electron Interference in Ballistic Graphene Nanoconstrictions;Baringhaus;Phys. Rev. Lett.,2016

3. Klein tunneling in graphene: Optics with massless electrons;Allain;Eur. Phys. J. B,2011

4. Neamen, D. (2002). Semiconductor Physics and Devices, McGraw-Hill, Inc.

5. Electron optics with p-n junctions in ballistic graphene;Chen;Science,2016

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3