Electron optics with p-n junctions in ballistic graphene

Author:

Chen Shaowen12,Han Zheng13,Elahi Mirza M.4,Habib K. M. Masum4,Wang Lei5,Wen Bo16,Gao Yuanda7,Taniguchi Takashi8,Watanabe Kenji8,Hone James7,Ghosh Avik W.4,Dean Cory R.1

Affiliation:

1. Department of Physics, Columbia University, New York, NY 10027, USA.

2. Department of Applied Physics and Applied Mathematics, Columbia University, New York, NY 10027, USA.

3. Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, P. R. China.

4. Department of Electrical and Computer Engineering, University of Virginia, Charlottesville, VA 22904, USA.

5. Department of Physics, Cornell University, Ithaca, NY 14853, USA.

6. IBM Thomas J. Watson Research Center, 1101 Kitchawan Road, Yorktown Heights, NY 10598, USA. USA.

7. Department of Mechanical Engineering, Columbia University, New York, NY 10027, USA.

8. National Institute for Materials Science, 1-1 Namiki, Tsukuba 305-0047, Japan.

Abstract

Electrons transmitted across a ballistic semiconductor junction are expected to undergo refraction, analogous to light rays across an optical boundary. In graphene, the linear dispersion and zero-gap band structure admit highly transparent p-n junctions by simple electrostatic gating. Here, we employ transverse magnetic focusing to probe the propagation of carriers across an electrostatically defined graphene junction. We find agreement with the predicted Snell’s law for electrons, including the observation of both positive and negative refraction. Resonant transmission across the p-n junction provides a direct measurement of the angle-dependent transmission coefficient. Comparing experimental data with simulations reveals the crucial role played by the effective junction width, providing guidance for future device design. Our results pave the way for realizing electron optics based on graphene p-n junctions.

Funder

Semiconductor Research Corporation's NRI Center for Institute for Nanoelectronics Discovery and Exploration (INDEX)

Publisher

American Association for the Advancement of Science (AAAS)

Subject

Multidisciplinary

Cited by 259 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3