A Study on Faster R-CNN-Based Subway Pedestrian Detection with ACE Enhancement

Author:

Qu Hongquan,Wang Meihan,Zhang Changnian,Wei Yun

Abstract

At present, the problem of pedestrian detection has attracted increasing attention in the field of computer vision. The faster regions with convolutional neural network features (Faster R-CNN) are regarded as one of the most important techniques for studying this problem. However, the detection capability of the model trained by faster R-CNN is susceptible to the diversity of pedestrians’ appearance and the light intensity in specific scenarios, such as in a subway, which can lead to the decline in recognition rate and the offset of target selection for pedestrians. In this paper, we propose the modified faster R-CNN method with automatic color enhancement (ACE), which can improve sample contrast by calculating the relative light and dark relationship to correct the final pixel value. In addition, a calibration method based on sample categories reduction is presented to accurately locate the target for detection. Then, we choose the faster R-CNN target detection framework on the experimental dataset. Finally, the effectiveness of this method is verified with the actual data sample collected from the subway passenger monitoring video.

Publisher

MDPI AG

Subject

Computational Mathematics,Computational Theory and Mathematics,Numerical Analysis,Theoretical Computer Science

Reference28 articles.

1. Safety Problems and Countermeasures of Subway Peak Passenger Flow;Zhang,2006

2. A Study on Theoretical Calculation Method of Subway Safety Evacuation

3. Study on Safety Evacuation Time for Passengers in Subway Station and Its Application

4. Automatic detection technology of passenger density in Beijing Metro;Zhang;China Railw.,2017

5. A Method of Automatic Pedestrian Counting in Metro Station Based on Machine Vision;Chen;J. Highw. Transp. Res. Dev.,2013

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3