Combined Effects of HA Concentration and Unit Cell Geometry on the Biomechanical Behavior of PCL/HA Scaffold for Tissue Engineering Applications Produced by LPBF

Author:

Gatto Maria Laura1,Furlani Michele2ORCID,Giuliani Alessandra2ORCID,Cabibbo Marcello1ORCID,Bloise Nora34ORCID,Fassina Lorenzo5ORCID,Petruczuk Marlena6,Visai Livia34ORCID,Mengucci Paolo7ORCID

Affiliation:

1. Department of Industrial Engineering and Mathematical Sciences, Polytechnic University of Marche, Via Brecce Bianche 12, 60131 Ancona, Italy

2. Department of Clinical Science, Polytechnic University of Marche, Via Brecce Bianche 12, 60131 Ancona, Italy

3. Department of Molecular Medicine, Centre for Health Technologies (CHT), INSTM UdR of Pavia, University of Pavia, Viale Taramelli 3/b, 27100 Pavia, Italy

4. Medicina Clinica-Specialistica, UOR5 Laboratorio di Nanotecnologie, ICS Maugeri, IRCCS, Via Salvatore Maugeri 4, 27100 Pavia, Italy

5. Department of Electrical, Computer and Biomedical Engineering, Centre for Health Technologies (CHT), University of Pavia, Via Ferrata 5, 27100 Pavia, Italy

6. Faculty of Materials Science and Engineering, Warsaw University of Technology, 141 Woloska Str., 02-507 Warsaw, Poland

7. Department of Materials, Environmental Sciences and Urban Planning, INSTM UdR of Ancona, Polytechnic University of Marche, Via Brecce Bianche 12, 60131 Ancona, Italy

Abstract

This experimental study aims at filling the gap in the literature concerning the combined effects of hydroxyapatite (HA) concentration and elementary unit cell geometry on the biomechanical performances of additively manufactured polycaprolactone/hydroxyapatite (PCL/HA) scaffolds for tissue engineering applications. Scaffolds produced by laser powder bed fusion (LPBF) with diamond (DO) and rhombic dodecahedron (RD) elementary unit cells and HA concentrations of 5, 30 and 50 wt.% were subjected to structural, mechanical and biological characterization to investigate the biomechanical and degradative behavior from the perspective of bone tissue regeneration. Haralick’s features describing surface pattern, correlation between micro- and macro-structural properties and human mesenchymal stem cell (hMSC) viability and proliferation have been considered. Experimental results showed that HA has negative influence on scaffold compaction under compression, while on the contrary it has a positive effect on hMSC adhesion. The unit cell geometry influences the mechanical response in the plastic regime and also has an effect on the cell proliferation. Finally, both HA concentration and elementary unit cell geometry affect the scaffold elastic deformation behavior as well as the amount of micro-porosity which, in turn, influences the scaffold degradation rate.

Funder

Italian Ministry of Education, University and Research

Publisher

MDPI AG

Subject

General Materials Science

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3