Abstract
Intrinsic cellular properties of several types of cells are dramatically altered as the culture condition shifts from two-dimensional (2D) to three-dimensional (3D) environment. Currently, several lines of evidence have demonstrated the therapeutic potential of mesenchymal stem cells (MSCs) in regenerative medicine. MSCs not only replenish the lost cells, they also promote the regeneration of impaired tissues by modulating the immune responses. Following the development of 3D cell culture, the enhanced therapeutic efficacy of spheroid-forming MSCs have been identified in several animal disease models by promoting differentiation or trophic factor secretion, as compared to planar-cultured MSCs. Due to the complicated and multifunctional applications in the medical field, MSCs are recently named as medicinal signaling cells. In this review, we summarize the predominant differences of cell–environment interactions for the MSC spheroids formed by chitosan-based substrates and other scaffold-free approaches. Furthermore, several important physical and chemical factors affecting cell behaviors in the cell spheroids are discussed. Currently, the understanding of MSCs spheroid interactions is continuously expanding. Overall, this article aims to review the broad advantages and perspectives of MSC spheroids in regenerative medicine and in future healthcare.
Subject
Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science
Cited by
30 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献