Effect of Laser Scanning Speed on the Microstructure and Mechanical Properties of Laser-Powder-Bed-Fused K418 Nickel-Based Alloy

Author:

Chen Zhen,Lu Yongxin,Luo Fan,Zhang Shuzhe,Wei PeiORCID,Yao Sen,Wang Yongxin

Abstract

Laser powder bed fusion (LPBF) is a powder-bed-based metal additive manufacturing process with multiple influencing parameters as well as multi-physics interaction. The laser scanning speed, which is one of the essential process parameters of the LPBF process, determines the microstructure and properties of the components by adjusting the instantaneous energy input of the molten pool. This work presents a comprehensive investigation of the effects of the laser scanning speed on the densification behavior, phase evolution, microstructure development, microhardness, and tensile properties of K418 alloy prepared by laser powder bed fusion. When the scanning speed is 800 mm/s, the microstructure of the material is dominated by cellular dendrite crystals, with coarse grains and some cracks in the melting tracks. When the scanning speed is increased to 1200 mm/s, a portion of the material undergoes a cellular dendrite–columnar crystal transition, the preferred orientation of the grains is primarily (001), and internal defects are significantly reduced. When the scanning speed is further increased to 1600 mm/s, columnar crystals become the main constituent grains, and the content of high-angle grain boundaries (HAGBs) within the microstructure increases, refining the grain size. However, the scanning speed is too fast, resulting in defects such as unmelted powder, and lowering the relative density. The experimental results show that by optimizing the laser scanning speed, the microhardness of the LPBF-ed K418 parts can be improved to 362.89 ± 5.01 HV, the tensile strength can be elevated to 1244.35 ± 99.12 MPa, and the elongation can be enhanced to 12.53 ± 1.79%. These findings could help determine the best scanning speed for producing K418 components with satisfactory microstructure and tensile properties via LPBF. In addition, since the LPBF process is largely not constrained and limited by the complexity of the geometric shape of the part, it is expected to manufacture sophisticated and complex structures with hollow, porous, mesh, thin-walled, special-shaped inner flow channels and other structures through the topology optimization design. However, due to the relatively narrow LPBF process window, this study will benefit from LPBF in producing a lightweight, complex, and low-cost K418 product, greatly improving its performance, and promoting the use of LPBF technology in the preparation of nickel-based superalloys.

Publisher

MDPI AG

Subject

General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3